PHYSICAL REVIEW E VOLUME 56, NUMBER 5 NOVEMBER 1997

Multiply scattered light correlations in an expanded temporal range
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The multiple scattering of light from a Brownian particle suspension is considered for backscattering as well
as transmission through a finite-thickness slab. A method for calculation of the radiative transfer propagator is
developed permitting to extend significantly a range of time wherein the temporal correlation function can be
found. Using the elaborated approach, numerical results are obtained in good agreement with experiment. A
deviation of a correlation function initial slope from linear is shown to arise from a contribution of a finite
number of scattering orders. The correlation functions for polarized and depolarized scattered light components
are calculated inside and outside the backscattering cone. The transmittion correlation function is found for
time intervals far exceeding a characteristic time of Brownian diffusion. A double-scattering term of the
temporal correlation function is obtained that is valid for any time intef\#1063-651X%97)02109-0

PACS numbep): 42.25.Gy

[. INTRODUCTION in its asymptotic form ofr 1. It corresponds to the small
momentum transfer region in wave-vector space. Such an
Much attention has been paid recently to light intensityapproximation may turn to be insufficient for quantitative
temporal correlation§1—12 in highly turbid media. Their ~PUrPoses, since the momentum transfer should contribute up
study is an essential part of the general problem of cohererp @ value of orde~1/, wherel is the photon mean free
phenomena in multiple scatteritigee review§12—15). The ~ Path, or extinction length.

temporal correlation functions of light scattered from a con- We can|der light scattering ffom a B.rovv.man particle
centrated Brownian particle suspension are mostly studiegusPension. The temporal correlation function is presented as

[1,2,4,7. They are usually considered for a time interval less® series in scattering orders. Accounting successively for an

than the ch teristic ti ded for a particle to diffuse increasing number of scattering orders, we find a remarkable
an [ne characteristic imeneede parti muse correspondence between the scattering order number under
a light wavelength distance. The correlation function is

o i o i consideration and a degree of deviation from a linear behav-
shown to decay with time as const \i/7 in this time in- io; of the initial slope of the temporal correlation function
terval in accordance with a theofy,3] predicting within the  gpserved experimentally for backscattering from slabs of dif-
diffusion approximation a linear dependence (ir. How-  ferent thicknesses. The relative weight of the lower scatter-
ever, an attempt to describe the light correlation within theing order contribution is shown to increase with time. Going
same approach in a wider temporal range studied experimeideyond the first/7 order approximation and summing the
tally turned to be unsuccessful, leading to a noticable dismultiple-scattering series, we obtain numerical results that
crepancy between theory and experimigsit agree rather well with the known measurement data. Consid-
Theoretical studiefl,3,7,8 were carried out mostly for a ering the electromagnetic field, the decay rate of the tempo-
scalar field, leaving effects of light polarization beyond theral correlation function is revealed to depend essentially on
scope of consideration. The vector nature of an electromaghe light polarization as well as the scattering angle.
netic field was taken into account in REL6], describing the We also consider transmission through a slab of finite
integral intensities of polarized and depolarized light compo-thickness, obtaining a closed expression for the temporal cor-
nents in coherent backscattering. The polarized componemglation function in a large-time limit. We calculate the
only was shown to exhibit a peculiar “triangular” depen- double-scattering term for an arbitrary time interval as a
dence of the backscattering peak on the scattering angléynction of slab thicknesk.
whereas the depolarized component was predicted to take a The paper is organized as follows. In Sec. Il a general
Lorenzian form, in good agreement with experiment. For amethod is outlined, deriving the temporal correlation func-
system with absolutely anisotropic fluctuations of permittiv-tion of multiply scattered radiation. In Sec. Il the temporal
ity, the coherent backscattering peak was shplif) to van-  correlation function is calculated for backscattering within
ish at all for depolarized components. the scalar field approach. In Sec. IV we take into account the
Considering the temporal correlation function far from thevector nature of an electromagnetic field, considering the
backscattering cone, initial slopes of the decay rate were catemporal correlation function in the neighborhood of the co-
culated for polarized and depolarized components in Refherent backscattering peak. In Sec. V we consider the tem-
[5]. Contrary to coherent backscattering, the decay of theoral asymptotics of the correlation function for radiation
depolarized component turns out to be steeper than that efansmitted through a finite thickness slab, and calculate the
the polarized one. Describing coherent effects in multipledouble-scattering term for an arbitrary time value. Section VI
scattering, the radiative transfer propagator is taken generalig devoted to a general discussion of the results obtained.
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Il. MULTIPLE SCATTERING SERIES Hereky=w/c, k= ek, is the wave number in the medium,

FOR CORRELATION FUNCTION ande=(g(r,t)) is the mean permittivity. Permittivity con-
tains an imaginary part due to light losses during scattering.
Therefore wave numbek also contains an imaginary part
determining the extinction length= (2Im k) 1.

Cl@P(t)=(sl 0)81 5(1) = (31 ,(0))(B (1)), (2.1 Equation (2.5) is solved by iterations. Multiplying two
such iterative solutions obtained for moments 0 ande-

where 6l 4(t) is the scattered light intensity at moment  spectively, and averaging the product, we obtain the field
lower indices determine the scattered light polarization, andorrelation function within the ladder approximation
brackets mean averaging over realizations. Presenting the in-
tensity as a product of electric fields, Ce(t) =(SE(ro,0)5E* (r,1))

We consider a temporal correlation of the intensity de
fined as

B1o{t) = B4 (1) 5B, (1), =f drydr i T(ro—r) T (ro=rG(r1—r{ DE(rL,0)

where dE ,(t) is the scattered electric field with polarization -
a at moment, one obtains the intensity correlation function . ;oA

oo X -
as an average of fourth order in field E (rl’t)+n§1 drncadrn 1 T(ro=rnsa)

Ci*P(t) =(SE,(0) SE%(0) SE (1) SE (1)) — (| 5E4(0) )

n
2 Xt~ 1461 —rpe O [ anary
><<|5Eﬁ(t)| ). (2.2 =1
One can present this correlation function within the Gaussian XT(re1 =) T* (1= 1)G(r =1/ ,HE(r1,0)
approximation as the pairwise correlation product KE*(r]1), 2.7

(aB) (1) = * 2
Cl*P(1) =[(FEL(0) SEL (1)) 2 @3 o
Such an approximation for multiple scattering was used first L
by Shapiro[18]. e /
Field E(r,t) is a solution of the wave equation for a ran- U ’t)_(47.,)2<58(r' 0)8e(r 1), (28
dom medium,
5 ) and 8g(r;,0) and ds(r| ,t) are permittivity fluctuations at
curl curl E(r t)+i JE(r,t) 4w d°P(r,t) moments 0 and, respectively. We omit factors exp{wt)
e g2 q2 a2 describing the temporal dependence of the incident mono-
(2.4y ~ chromatic wave, since they cancel out when transiting to the
intensity correlation functiorf2.1).

where two random vectors, polarizatid®(r,t) and field We define the Fourier transform of the permittivity corre-
E(r,t), are connected by the relationship lation functionG(r,t) as follows:
_e(rt)— diq ~
P(r,t)=—7p —E(r,0). G(r,t)=f (ZW)gG(q,t)exp(iqw). (2.9

The permittivity e(r,t) describes optical properties of the Let the scattering system be an ensemble of particles under-

random medium. oing the Brownian motion. In this case one can present
Let the incident electromagnetic field be a plane mono9°'"9 ‘ P

chromatic wave with wavelength and frequencyw. We
neglect a permittivity variation during the time it takes the
wave to propagate through the system, since this time i
much shorter than that of a Brownian particle shift at a wave
length distance. In this case Eg.4) can be presented in the
integral form

G(9,t)=Go(g)exp—Dg?t), (2.10

§VhereGo(q) is the Fourier transform of the static correlation
function, andDg is the self-diffusion coefficient. We con-
sider the dispersion of static correlations being negligible,
i.e., Go(q) =Gg. This is tantamount to assuming on a small
. Se(ry,t) size of the scatterers, <<\, wherer is either the permittiv-
E(r,t)=(E(r,t)>+f drlT(r—rl)TE(rl,t), ity correlation length or the scatterer size.

2.
@9 IIl. TEMPORAL CORRELATION FUNCTION

where(E(r,t)) is the mean field andi(r) is the electromag- FOR BACKSCATTERING. SCALAR FIELD
netic field propagator taking the form within the far zone

b We assume the heterogeneous medium to occupy a half-
approximation

space with boundarg=0, wherez is a Cartesian coordinate,
K2 directed inward toward the medium. We consider back-
( o ﬂ) ikr (2.6) scattering at a small anglé counted from the backward

r2 direction. To avoid considering a cyclic diagram contribu-
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narrow coherent backscattering cone. Two of these condi-
tions determine the angular intervell < 6<<1.
Let the radiation fall normally upon an illuminated area f dgdq; —

tion, in this section we assume angleto be outside the )
f driexplik{ -r1—0z;)G(ry—r1,t)T(r,—ry)
z,=0

A=W?2 in the z=0 plane. The incident wave vector can be = G(qy,H)T(p1+Q)
presented in Cartesian components as follows:

(2m)°

Xexdigy-ri+i(pi+a)-ralAg,
ki=k/ +ik!, k/=(0,0k), Kk'=(0,00/2), (3.1)
where

whereo=1"1 is the turbidity. The effective depth of radia-

tion traveling_inside the medium is of the.order _IofOne Al:J driexdiry-(k/ —g;—p1—Qq)— 0z4].

assumes a distande,—r;| to the observation point, to 2,;=0

exceed significantly the linear dimensions of illuminated vol-

umeV=Al, i.e.,ro>W andl. Using the momentum conservation ld&/—p,—q;=0, we
Propagating through a highly heterogeneous mediumgalculate

light usually becomes depolarized due to the multiple scat-

tering. Therefore one generally describes effects stemming (2m)%55(qy)

from multiple scattering considering a scalar field instead of ™ o+iq,

the real electromagnetic one. In this case the electric field in

Eq. (2.7 is changed to a scalar, and the propagat(r) whereq, is the transversal component of wave veajor

: (3.6

transits toT(r)=r ~‘k3exp(kr) with the Fourier transform Similarly the integral over; yields
. (2m)%5,(a,)
T f d3p dip-nTm), T 47k3 Azzfz Odrn+1eXF(”’n+1'q_UZn+1):—O__iq =
ry= explp-r , = , n+1> z
RSP DTR), TR 37
(3.2

Multiplying A, andA,, one of two delta functions,(q, ) is
{eplaced by the illuminated areg 5,(q, ) —A/(27)2. As a

The pair of propagators containing the observation poin )
P propag 9 P result we obtain

takes the form

K A1A2=(27T)2A52(‘h)
T(ro—rp)T*(ro—rp)=~ r_geXF[_iks' (ra—rpl, 3.3 qz+o?

0

. (3.8

Performing Fourier transformation of functior(r,t)
whereks=kro/r, is the wave vector of the scattered wave andT(r), we present the field correlation function for back-

. . . . : R .
directed to the observation point. For backward scatteringscatteringC(t) as follows:
one has

cv=8 f et Dutl ko))
ks=kstiks, ke=(0,0-Kk), k¢~(0,0,-0/2). At o’

(3.9

+2
The permittivity correlation functiorG(r,—r/,t) of Eq. n=1

(2.8 does not vanish only for distancgs—r||<r.. There- B o 2

fore, taking into account. <! in exponentials containing X exp— Dot (Ki=py)"+ (P =p2) "+ -+

o n
2—772 J dp,dp, .. .dp,

initial or scattered wave vectors, one obtains + (Pr1—Pn) 2+ (Pn—ks)?1}
H H ! H ! li l
expliki-ri—ik-ry)~exdik{ - (ry—ry")—oz], xI1 3.9
39 =0 [(p+ @)~ k?](pf—k*2)
exp(—ikg ry+iks -ri)~exg —ik -n-rp-oz,]. whereB~AG; is a multiplicative coefficient whose value is
S

unessential for what follows.
Deriving Eq.(3.9) from the scalar analog of ER.7), we

As is seen from these equations, the integrals with respect t@ke spatial integrals over unrestricted space except for those
rp andr,; in Eq.(2.7) can be taken over infinite space due ascribed either to the first or the latter scattering events. Such
to the boundedness of the permittivity correlation function.an approximation is know3,19 to bring to a divergent
The spatially restricted character of the system affects onlyesult att=0. Thus boundary conditions are to be taken into
the integrations with respect tq andr, ;. The integration account properly20]. The mirror image method is used for
with respect tar, yields this purpos€16,19—21, which leads to a substitution
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1 1 dq 2t Ki-p1 P1-P2
——— —f(w), 3.1 f.—ex — + +...
q§+02 o2 (w) (3.10 .1;[,1 o+ig,c09¥, F{r( k2 k2
Pn—1-Pn  Pn-K
wherew=q,/o. A specific form of functionf(w) depends + 12 A 2 S)l
on the choice of a mirror image plane. Taking the latter as K k

z=12;, 2,= —0.7104, in correspondence with the classic so- 40 ot 12
lution of the Milne problem(see[20]), one obtains _ f _ag 2t ' (_

i i<n J o+ig,cos 1+ sz(n Lpy-pot .
f(w)

1
X%[z(ki p1)?=2(K;- py)(Ki- p2) + (n—=1)(py-Pp2)?

_ (1—w?)[1—cog1.4208w) ]+ 2w[w+ sin(1.4208w) ] +2(n=2)(p1-P2)(Py- P3) +(N—2)(n—3)

(1+w?)?

340 X(Pl'pz)(Pa'p4)]+“']- 314

Equation(3.9) describing the temporal correlation function
as the series in scattering orders is valid for any value of Deriving Eq. (3.14), the equalityk;=—k, valid for the

We restgic_tloyrselves to the small time limit7<1, where  packward direction, as well as a symmetry of the integrand
7=(D¢k) "~ is the characteristic time it takes a Brownian yith respect to they, permutation, were used.

particle to diffuse a wavelength distance. Tihe=k neigh- Now these angular integrals in E(8.14 are calculated
borhood makes the main contribution to the threefold inte'explicitly,

grals with respect tq, due to the pole of the integrand.

Changing to a spherical coordinate frame

f dpFJO p|2dp|f dq,

dQl 477
f Po.

o+ig,co8; o

- - i i i i W) o+ig,co®, o VPu
and expanding the integrand in partial fractions we obtain ke) oTl1(; 1 o
fw prdp _ u 1 (dQy(ki-p)® 4w
o [(p+a)®—K[pi—k*?]  2(oFiqLo8)’ 4) o+ig, cos; o PV
(3.12

where g, is the angle between vectpy and axisz. Calculat- 1 _ dQldQZ(pl'.pZ)
ing this integral we took into account thay is of order ofo k2J) (o+ig, cosé,)(o+iq, cosbs)
and is hence significantly less thi.

2
Thus angular integrals over orientations of vectorse- __ 4_77) szi:
main to be calculated in E43.9), o
= 1 a\ & [ o )\" 1 dQ,dQ,(p;-py)?
Rty = - _ _ _
Ce'(V Bf_wazf(w)dqz[ex;{ T)+r121 (477) k4J (o+ig, cos6y)(o+iq, cosb,)

1 3
5P6—PoP1t 5P

(2

iJ d€Q,dQ,dQ5(p1-P2)(P2- P3)
k*J (o+id,

XHJ ae, oY (n+1
i<n J o+iqg, cosé, ex T (n+1)

Ki‘p1  P1-P2 Pn-1"Pn  Pn-Ks
_( k2 + k2 Tt k2 + k2

co0s64)(o+ig, cosb,)(o+iq, cos f3)

41

3
7) w?p3, (3.15

(3.13 -

Expanding exponentials into series in ordertbf, one
obtains where auxiliary functions are introduced:
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1
Po=Po(W) = V—varctarw,

1
P1=P1(W)=—(1-po). (3.16
w

Substituting Eqs(3.14 and (3.195 into Eq. (3.13 we
come to the expression

B (> 4t
R)y4y= — -
Ce'(t)= Uf_mdwf(w)(ex;{ .

Series of separate terms within inner curly brackets are easil
summed as geometric progressions and their derivatives wit]
respect to parametqy, to yield the correlation function as

follows:

ce(t)=

(1+po)

” 2t
+ > exp{——(n+1)
n=2 T

2t B
x { Po— —wX(n—1)pip; *

1/2t)\? _ _ -
+§(7) [2p.p5 "+2w?pipg *+(n—1)pp °

X (3 pZ—pop1+ 3 p5)—2(n—2)w?p3p] 2

+(n—2)(n—3)w*pipy 1+ - ) (3.17

a 5
B 1+ Po() — — piw

p( Zt) ) <2t)2
X ex —— dc(t)+

-7

exp — —

T o]
TI wf(w)dw

-
2t
X ¢(t)[ p1(1+w2ex;{ - 7))

2t
+ 3 Pi—PoP1t 2 pS)exp( - 7) (1) +w?pi

4t
X exp{ - 7) d(t)

x| — 1+W2p1ex;{ - 2—:) ¢(t))

+---f, (318

where functiong(t) =[1— poexp(—2t/7)]"* stems from the
infinite number of termpjexp(—2tn/7) in series(3.17).

We calculate the temporal field correlation function angular dependences of polarized and depolarized compo-
Cc®)(t) for backscattered radiation from E@.18 using no
adjustable parameters. The results are shown in Fig. 1. Theith that of ladder ones. This permits a simultaneous de-
temporal correlation function is knowfi—3] to depend lin-
earily on /7 in the small time range. For this reason we function for backscattered light. To avoid cumbersome deri-
plot the correlation function against this temporal variable.vation, we restrict ourselves to the small time liri¢ 7.

From Fig. 3 of Ref[5] we show measurement ddia] for
the temporal correlation function of light scattered from aand be polarized along axig, E;=(0,E,0). The scattered

polysterene latex suspension, and a theoretical interpolation
plot proposed there. As is seen from the plots, our results
agree rather well with the observed behavior. For larger val-
ues oft, \t/7=0.5, the curve resulting from E¢3.18 ap-
pears to be closer to experimental data than the interpolation
of Ref.[5]. Describing an initial decay rate of the temporal
correlation function at< 7, one defines a slopg as a coef-
ficient in the relationship

(3.19

The calculation yieldsy=1.9 as compared with the value

vy~ 2 obtained from experimefg]. For comparison we also

show curve(3.19 with y=2 used as a fit in Ref2].
Changinge(t) to

CH(t)~[1+ y(6t/7)¥] 71,

1—[poexp(—2t/7)]"*?
1—poexp—2t/7)

én(t)= (3.20
in Eq. (3.18), one obtains an expression describing a contri-
bution ofn scattering orders to the correlation function in the
small time limitt< 7. We calculate the temporal correlation
function CER)(t) arising from then scattering order contri-
bution and plot it in Fig. 2. Calculated results are compared
with experimental datp2] for backscattering from slabs with
different thicknessek =0.6, 1, and 2 mm. The main contri-
bution is assumed to be given into the correlation function by
he terms of serie$3.17) up ton=2L/1*, wherel* is the
&gansport mean free path. Takitig= 144 um[2], we choose
n=_8, 14, and 28. The calculated plot is seen to roll over at
short times quite similar to the experimental one. The mag-
nitude of deviation from a straight line also increases With
correspondingly to measurements. A similar accumulation of
scattering order inputs into backscattering enhancement was
analyzed in Ref[20].

IV. POLARIZATION EFFECTS IN BACKSCATTERING

In this section we take into account the vector nature of an
electromagnetic field, and calculate the intensity correlation
functions for polarized,

CYV(t)=(8IV(0) SIU(1)) — (S1V)?, (4.9
and depolarized,
C/H()=(8115(0) 81} (1)) — (8112, (4.2

components of scattered light. Within the factorization ap-
proximation they are presented as products of the field cor-
relation functions,

cm=IcE' % cM=Ic" M. (4.3
Since the vector nature of the field brings about different
nents, we consider a contribution of cyclic diagrams along

scription of temporal and angular behavior of the correlation

Let the light wave fall normally upon the=0 boundary
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light is observed in thex;z) plane, with the wave vector
defined asks=(ky6,0,—K). Ignoring a projectiondE, of
scattered field on the axis at small angle®, we define the
field correlation functions for polarized and depolarized
components as follows:

P ()

0.5
VvV —
CYV(t)=(SE,(0) SE(1)), "

0.2 i
N

Ce"'(t) = (SE(0) SEy(1)).

FIELD CORRELATION FUNCTION

Sincer .<\ within the pointlike scatterer approximation, 0.1
we set coordinates of complex-conjugated propagators to be 05 L 4
equal pairwise, and introduce, for convenience, the fourth- )
rank tensor 2

. 4 02 1
Taﬁ(r)Tyﬁ(r):kOAa'y,B(?(r)' (45)
L 1 1 L

At small times the value of the wave-vector transfer o be 0.4 086 0.8 1

g entering the fluctuation correlato&(q) is known to VE/T

be changed to its mean valug—(q?)=2k? [1]. Indeed,

every function G(q,t) in Eq. (3.1 brings a factor
exp(—2t/7)~1—2Dsk2t att<r. 1 results from EQq.(3.18, curve 2 represents measurement data

I . . 2,5 3i fit(3.1 ith y=2 d 4 Its f
Thus contributions of ladder and cyclic diagrams to the[ Sl curve o 1s a '(. 9 with y=2, and curve 4 results from a
. . . theoretical interpolation of Ref5].
field correlation function can be presented as follows:

FIG. 1. Field correlation functions vs square root of time: curve

(6E4(10,0)0E7 (1o, 1)) ~exp(—4t/7) S(rq,rp,t)=A(r;— r2)+§f drsA(ri—r3)S(rg,rp,t),
X[Ghayy(D+ G201, (4.6 4.9
where where£=kgGoexp(—2t/7). FunctionS(r4,r5,t) is known to
be an average of the product of two Green functions of wave
Gt arcnsent otz 2o) eato(z 4 less the iyle-suatrig contrbuton and can

a restricted syster(r,,r,,t) becomes translationally non-

x| A(ry—rp) +kiGoexp — 2t/ 7)
" R ciP)
XJ dragA(ri{—rg)A(rzg—ry)+---
aa,yy 1 :
4.7 =z ¢ o
S 3 :
I
and % 21 0.1}
z
GO (t)=kZ| dridrexd—o(z;+2,) £
aa,yy 0 1Yt 2 o4y 2 o
5 0.1 - 00— 757 03 0.4
z
+i(r2—r1)(ki+ks)]{/§(rl—r2)+k3Go §
&=
A z
xexq—Zt/r)f drzA(ro—rsa) £
A 0.01 1 1 1 )
><A(r3—r2)+---} : (4.8) 0.0 0.1 0.2 0.3 0.4 0.5

aa,yy

. . . L. t
Summing over indexv is not assumed here. Spatial integrals &

are to be taken over the volume of the §catter|ng system. As FIG. 2. Contribution ofn scattering orders to intensity correla-
is seen one has to sum the same S‘f”es in@d8.and(4.8). tion functionCl(R)(t) vs square root of time: curve bh=8; curve 2,
Denoting the sought sum of series$($,,r,,t) and using a n=14; curve 3n=28; curve 4, total contribution. The inset repre-
standard procedure of summation, we obtain the well-knowsents experimental plofg] for backscattering from slabs with dif-
Dyson-like equation ferent thicknesse€a) L=2 mm.(b) L=1 mm.(c) L=0.6 mm.
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invariant, as distinct from the priming propagatb(rl— ). Thus to solve the problem one has to find components of
Using the mirror image method for light scattering from thetensorS‘O)(q t). Performing the Fourier transformation of
z>0 half-space, one presents the propag&r,,r,,t) in  EQ. (4.9 for an infinite homogeneous medium, we obtain
the form 30)
A . Sep,pp(At) = Aaﬂ ¢¢(Q)+§Aaﬁ w(Q)SyV (A1),
S(ry,r2,t)=SO(r;—ry,t) (4.13

—é(O)(xl—xz Y1—V2,21+Zo— 22, 1) whereK(q) is the Fourier transform of tensc?r(r)

(41@ —_ dr I’ar¢ rlgrw
- - ) o Aaﬂ,@p(Q):f—z Oag™ — Oy~ —
where SO(r,t)=59(x,y,zt) is the radiative transfer r r r
propagator for an infinite medium, and point
r,=(x,y,—z+2z,) is the mirror image of =(x,y,z) with
respect to the=z, plane. Equation4.10 guarantees that Using the axial symmetry of this expression with respect
propagatorS(r,r,t) is zero if at least one of two points 0 vectorq, the components of tenso4.14 are easily cal-
r,,r, is placed in the=z, plane. culated in the coordinate frame with thexis directed along
’Closing Egs. (4.7) and (4.8 by means of function vectorg. The number of tensor indicesor y is to be even in

g i d usi imati 1 t th this frame due to the indicated symmetry. Since the total
5(r'1,13,1), and using approximatiofd.10 we present the \her of indices is four, the number of indeis even also.
field correlation function as

Thus any nonzero componeft, 5,y5(d) can contain only

two pairs of different indices. The def|n|t|c(|4 14 immedi-

Xexp(—iq-r—or). (4.19

(OB (10,00 0B (1o, 1)) ~exp(—4t/7) ately gives the symmetry properties
X f PRI ER K ya D =R 15,050 = K o 5D =K 15,01
2w aa,yy Y Y Y Y 4.19
+S9) (a1, (4.1)  Using auxiliary functions(3.16 and defining supplementa-
rily p,=w~2(3—p;), we find components of the priming

wherea=x ory, SO(q,t)=f SO(r,t)e”'9"dr is the Fou- tensor(4.14) as follows:
rier transform of the radiative transfer propagator, and
q:(koavoqu)' iy _ % _ m
Accounting for the single-scattering contribution, the in- A11217 A2z 2775 (3P0 2p1+ 3P2),
tensity correlation functions of polarized and depolarized
scattered fields can be presented as follows: _ _
Ag1o=5A3s 33—2 (Po—2p1+p2),

dag, (4.16

ch<t>~exp(—4t/T>[1+3f 5 H@[Syy(az.0) _ )
A12,12=%(p0+6p1+p2), Ajj,33:7(p1_p2)a
Z(0)

+Syy,yy(qat)]}1

27 .
AJ&J‘SZF(DO—Dz), j=1 and 2.

(t) ~3exp— 4t/7)j f(qZ) Here indices 1, 2, and 3 denote components in the Cartesian
(4.12  frame with component 3 directed along veapiSolving the
=(0) =(0) equation set(4.13 with respect to the radiative transfer
X[ Sxyy(dz,t) + Siyyx(a, ) ]. propagator, within this coordinate frame we obtain

— ~ 1
0 _3O) _
S(11),11— S(22),22— 2

K11,11_K11,22 N (1_§K3333)(K1111+K1122)+2§K%133 J
1= R0t ER e (1= ERga39 (1= N1y 01— ER 1y 5) —26%A %, 5f

S
(1= EA 1 N 0 (1= EA g 1T EA 1 )

§A1133
(1 EX1g 0 EX 11 o {[1— ER g 11— EX 11 20 (1— EX 3339 — 251\133}'

(4.17
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S0 = 34— j=2and 3.
MY (1-ERy0)° - €Ay
|
Obtaining the polarized and depolarized light correlation _ _ 87 1

functions, we calculate the following componenﬂd('?,)yy Siloy),yy(q.t)=5§?gyy(q,t)%3—2—,

=(0) =(0) ' o (qlo)-+6t/iT
X(a,t), Siiyy(at), and S;J . (q,t), due to Eg.(4.11). (4.22
These laboratory frame components of tenS8P(q,t) are _ 167
related to the components found in the coordinate frame S@?yx(q,t)%%.

fixed by vectorq as follows:

The component$S{)), (q,t) andS{},,(q.t) are seen to be
singular at{g,t}—0, and to coincide with corresponding ex-

pressions for the radiative transfer propagator obtained ear-
Siyy(a)=S4a,t) at §=0, (4.19  lier for scalar field[3], and S{)(q,t) is finite.
Substituting Eq(4.22 into integrals(4.11) and calculat-
ing them by the residue theorem, we find

§§/(;'>,yy(q’t) :g(lg),ll q,t),

§§3>,yx(q.t) :’é(lg),zl(q:t)00§¢+§&%),31(q1t)5in2¢a

—~ 1 1
where ¢=arctank,6/q,). ComponenlS&?gyy(q) is given for  C{'(t)~ ) 1t
0#=0, since it describes the ladder diagram contribution de- (1+6t/7) l 6t/7
pending solely o, due to Eq.(4.11).

2|z
1—exy{ - gq&h)

We analyze first an asymptotics of propaga%fi,t) at X
smallg<a, since it defines essentially an initial decrease of
correlation function with time and scattering angle. At
w=¢g/o<1 functionsp, can be presented as

o]

1
+ 1+
(1+ 6t/ 7+ (koala)z)zl J6t/ 7+ (kol )2

2 4

_ 1 w w f —012 2|Z |
Pi=ont1 2n+3 ‘2n+5 0 orn=O0L2Z... X 1—eXF< - =B+ (ko002 } 8By,
(4.19
Substituting Eq(4.19 into Eg. (4.16), we obtain asymptot- CVH(¢ 1
ics of theA tensor components at small e (1) (1+ Jot/n)?
- - - 4m(8 8 1] 2|z
A1115=8Ajj 3= 81\13,31:7(1—5— 3—5W2) : X [ 1+ m»l—exp( ——VBtT|| | +B,,
(4.23
~ o e _Am 8 8 )
Assas= 811278 122=" 7| 757 708V | whereB; andB, are terms, contributed from nonasymptotic

(4.20 parts of propagator, dropped in E@.22. These terms are
aml2 2 known to have an analytic dependencetoand #°. Equa-
A ( 2>, tions (4.23 predict the slopey for the polarized component
to depend on the scattering angle decreasing with increasing
0. At =0 the slopes of polarized and depolarized compo-

~ dmw(2 22 , ) nents take the same valug=2.4, assuming that tern3;
Apaz=—g 75" ) 1=1 and 2. andB, are dropped. _ _ .
In Fig. 3 the field correlation functions of polarized and
The optical theorem permits us to relate the expansio depolarized scattered light components calculated from Egs.
P np P ?4_17) and (4.18 are plotted againstjt/+ for different
parametek to the turbidityo, : N
angles. For convenience all the quantities plotted were nor-
3 . malized to the polarized light intensitysl\)=CYY(0) at
&= —Uexp( _2_) 4.2y 0=0. We choose the dimensionless angular variable
8m Y=kol 6 to be Y=0, 0.2, 1, and 2. Foh=0.515 um and

I*=19 um taken from Ref.[21], theseY values corre-
Substituting Eq(4.20 into Eq.(4.17 and accounting for spond to scattering angles=0, 0.05, 0.25, and 0.5, in de-
Eq. (4.21), we obtain grees, describing, in correspondence with measurement data
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0.0 0.1 0.2 0.3 04 0.5 FIG. 4. Temporal dependence of the field correlation function
t/T outside the backscattering conex®#>\/I: curve 1, polarized

component; curve 2, polarized component less single-scattering

FIG. 3. Temporal dependence of field correlation function forcontrlbutlon; curve 3, depolarized component.

polarized(curvesa, b, ¢, andd) and depolarizedcurvese, f, g,
andh) components of scattered light at angular variabieurves
a ande: Y=0; curvesb andf: Y=0.2; curvesx andg: Y=1; and
curvesd andh: Y=2.

ourselves to the scalar field case. Let a point, wherein the
scattered radiation outgoing from the L plane is observed,

be written ag = (Xq,Yo,L +2.) wherez, is a distance from
the z=L plane to the observation point along the normal.
[22], the temporal correlation function at the scattering peakDefining vectorr, = (Xq,Yo,2.), We obtain

0=0 and 0.05, at half-width9=0.25, and at the foot of the

peak,#=0.5. Iro=Tneal = V(X0 X1 )3+ (Yo= Yns )2+ (2 + L= 241 1)
In Fig. 4 the polarized components with and without a W

single-scattering contributiofcurves 1 and 2, respectively i Fo-fnva (5.

and a depolarized ongurve 3, are shown fory>1, i.e., L re ' '

0>\/1. To obtain results in this angular range, one is to

account for the ladder diagram contribution only. Whererfh)l:(xn+1,yn+1,zn+1—L) is a medium point mea-

The polarized and depolarized components exhibit rathesured in a Cartesian frame with origin (Q,), Then the pair
different temporal behaviors of the correlation function, theof complex conjugated propagators containing the observa-
polarized one turning out to be more sensitive to the angle ofion point can be written as
scattering. The calculated slopg,, for the polarized com-
ponent takes the valueg,, = 1.5, 0.9, 1.1, and 1.2 for
chosen angles, respectively, whereas the corresponding slope
for the depolarized component varies with angle noticeably
slighter, ygep = 2.2, 2.2, 2.3, and 2.4, respectively. At +ikd-rp ). (5.2
Y>1 we getyp,=1.3 andygep=2.5. Omitting the single- . o
scattering contribution, we calculatg,=1.5. These values  One hasks=k; for forward scattering. Taking into ac-
are to be compared witly,,=1.6 andyye;=2.6 obtained in count relationshigr, —r/|<I| and extracting imaginary parts
Ref. [5]. The slope of the polarized component exhibits aof wave vectors, we get
nonmonotonic angular behavior because the cyclic diagram )
contribution becomes re i i expl kg iy kg rn )

gular with respecttio at suffi n+1 s Tn+l
ciently small values of scattering angle involving a slope
decrease, and then vanishes at largencreasing the slope

once more. The results obtained permit a direct experimental . L
verification Exponentials containing incident waves can be rearranged as

2\ 2
0 L
T(ro—rns)TH(ro—rps)=~ E) exp( —Kg Ty

~exg —Kk¢ (rnp1—rpe)—o(L—2z,:0]. (6.3

X A Lt A
V. TRANSMISSION CORRELATION FUNCTION exp(ki-ry—iki -ry)~exdiki - (r;—ry)—oz]. (5.4

We consider temporal correlation function for radiation Repeating arguments similar to those used when deriving Eq.
transmitted through a slab with thickneks>1, restricting (3.8), we obtain
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Calculating integral$5.6), we use the following formula

27)?A8 ig,L
A1A2:( ™) (Z(qL?e);glqz ){l—exn:—(o'—}—iqz)l_]}z_ for a multiple Gaussian integral:
—(Q,~ 1o
5. o0 o
©9 7| dayday e D@+ +au)]
Thus the transmission field correlation function can be writ-
ten atoL>1 as a series in scattering orders 1 - )nIZ
== (5.7
cM(t)= Bfo dg, expligl) < [ o |" Vn+11Dd
. ~=2T (q,—i0)?i=0 | 272 at=;_,""1q;=0. An integral overy, in Eq. (5.6) is mainly

contributed from integration areds|, |qy|<(Dgt) ' due
% | das---da.exd —D.t(a2+ - - - + g2 to the Gaussian exponential decay. Using the smallness of
J Ga- - - denexil —Dst(a Go)] variablesq;, andq, as compared tk’, one can significantly
simplify denominators under symbol of product in E§.6).
> 1 . (5.6) Taking into account that vectotggandk’ are directed along
i<n (p?—k*?)[(py+0)2—k?] axis z, and neglecting the terms of second ordegjp and

gy, one obtains
Equation(5.6) contains three length parameters: the scat-

terer diffusion path,=(D4t)2, wavelengthx, and extinc-
tion length I. Accounting for A<<l one separates three
asymptotic regiond;<\, A<<I;<l, and | <l; determining
three temporal intervals wherein the analysis of correlationthus transversal variableg, andq,, are contained only in
function (5.6) is quite different. the Gaussian exponential, and integrals over them can be

The behavior of the temporal correlation function at thetaken by means of Eq5.7). The integral oven,, is evalu-
conditionl, <\, i.e.,t<r, has been studied in detfdl-9]. In  ated  quite  differently. At qg,<o one has
thel,>| region field correlations vanish entirely due to large D4tq5,<Dgta?<1. Therefore one can neglect the exponen-
values oft. We thus consider the intermediate interval tial decay exp(—DStZ,:1”+1q,22)~l, and integrate by means of
\<I,<I, determining the temporal range<t<(D¢ ~2)"!.  the residue theorem

2
(p+q)2—k2~ k’+qz—m§1 q.z) -k (5.8

fm . -fld%z' dgul] - (— qzi) (59

= 1 [t 40— q+ (0/2)][dst - +a—q—(i0/2] | a-io

Also calculating the integral overy, which contains a pole of slab, cL=10, the double-scattering contribution is calcu-
(n+2) order, lated to be about half of the total function "#tr=1. The
triple-scattering contribution approximates therewith near

. dq, ] (2mL)nt? L 25%, and scattering orders higher than the fifth practically
(=2mi) f mexp(qu): Tt ¢ do not change the correlation function within the considered
9z time interval.
we obtain the transmission correlation function as a series in _TNe relative weight of higher scattering orders decreases
scattering orders with decreasing slab thickness. FeL =2 the double scat-
tering contributes near 90% of the total sunt/at=1.
C(T) t)=BLe °L (O-L)n/ \" 1 5.1
e ()=BLe “on+1lat) (nr)r (5.10 VI. DOUBLE-SCATTERING CONTRIBUTION
TO THE TRANSMISSION TEMPORAL

As seen from Eq(5.10 the number of scattering orders to be CORRELATION FUNCTION

accounted for increases with the slab thickness, and de-
creases with time.

One can formally sum seri€8.10 presenting the corre-
lation function in a closed form,

Since for sufficiently large timet/ 7>1, and slab thick-
nesses of the order of the extinction length, the double scat-
tering closely approximates the transmission correlation
function, we calculate its contributiotﬁ(ET;(t) to the correla-

- B(4t| _ (xdx tion function valid for arbitrary values df r and oL.
Ce'(h=—_|—|e" jo ~ (&1, (5.1 This contribution is described by the term with=1 in

Eq. (2.7). Approximating propagatord™* (r;—r;) in the
where k= oL 7/(4t). range(r,—rq|>[ry—rif, [rp—rl as

The temporal correlation functioB{")(t) can readily be . _ , ,
calculated from Egs(5.10 or (5.11). For sufficiently thick TH(ry=ry)=T*(ra=ryexdiky(ra—ra—ry+ry],
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we obtain
GO

e olri—ral

Cg,—%(t):Bf j drldFZWefﬂ'Zl*o’(szz) 1
1712

X exp{ — Dtl (ki + kip)*+ (kg + ki) T},

(6.9
wherek,,=k’(r{—ry)/|r,—r,| is the wave vector of radia-
tion propagating between two scattering points. Spatial inte-
grals are taken over an infinitely wide slab with thickness

Introducing the relative coordinatesr=r;—r,,

r=(x,y,z), and transforming the spatial integral to the
spherical coordinate frame, we have

1 (L—22z1)/(2u)
j duf dr
0 0

0 —(L+227)/(2u) 0.01
+ f du J’ dr 0 1 2 3
-1 0

17ks

FIELD CORRELATION FUNCTION
2
o

L/2
CL)(t)=2mBexp(—al) J ledzl

xexp{—[or+4D¢k?](1—u)}. (6.2
L ) . FIG. 5. Transmission temporal correlation function of field
Taking integrals with respect toandz, we obtain the trans-  yjthin the double-scattering approximatiorfl) L/\=0.5; (2)
mission correlation function within the double-scattering ap-| /\ =s: (3) L/x=2; (4) L/A=1.
proximation in the form

exp(4Dtk%u)

-4 data. We ascribed the deviation of the linear dependence of

the correlation function oR/t/ at small times to the bound-
u a(1-u)L edness of scattering orders because of the finite slab thick-
1- m[ 1—ex;{ - T) ] ness, pointing out an illustrative resemblance to experimental
plots. Note that, comparing the calculated results with mea-
0 exp(4DStk2u)[ u surement data, we substitutedinstead ofl, considering it a
f d Ll_ oL(1—-u) reasonable fif22] for results obtained within the pointlike
scatterer approximation. Considerable attention is being fo-
o(1-u)L cused currently on the problem of scatterer finiteness
We calculated the temporal correlation functions for po-
Equation (6.3) describes the double-scattering transmis-larized and depolarized scattered light components. The tem-
sion for a wide beamAY%L>1, incident normally to the poral slope for the polarized component was shown to be
slab. For a scattered wave deviated from the normal direcquite sensitive to the scattering angle, whereas the slope for
tion, Eq. (6.3 remains valid to terms of order @f. the depolarized one practically does not vary with the angle.
The double-scattering terr@{)(t) calculated with Eq. Within the factorization approximation the intensities of
(6.3) is shown in Fig. 5 as a function of time, for various slab scattered light with the same polarizations only give rise to
thicknesses. It appears to coincide with the temporal corredonzero correlations, sincesE,(0)sEy (t))=0 from the
lation function(5.10 contributed by all scattering orders for Symmetry consideration. Going beyond the framework of
t/7=3. The decay ofC{'}(t) becomes more sharp with de- this approximation, the connected eight vertex diagrams
creasing thickness. Comparing results of the calculation wittshould be considered, involving a nonzero contribution to the
Egs.(5.10 and (6.3 one sees that the temporal correlation _correlat|on of intensities with different scattered light polar-

function can be adequately approximated by the double scal2ations, (SE(0)oEy (0)SE(t) SEY(t))#0. Graphically
tering for oL<2. the transition to connected diagrams is performed by means

of the Hikami vertex26], and corresponds formally to ac-
VII. SUMMARY counti_ng _for the hig_her-prder terms in paramexe!r. The
factorization approximation describes the main, short-range
We calculated the temporal correlation function of multi- part of the correlation function, whereas the connected dia-
ply scattered light for backscattering and transmission. Wgram contributions reveal themselves as long-range parts
developed a method for calculating the correlation functiorweaker in magnitud¢27]. Generally the long-range terms
in terms oft/ 7. Applying it to the backscattering and taking arising from the\/I higher-order contributions become more
into consideration terms up to thé&/ §)? order, we obtained prominent for larger values dfand can obscure the correc-
results that quantitatively agree with the known experimentations of higher order int/7 to the short-range term found

c(t =EL — oL —4D tk? 1ol

X

-1 1—U

X
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here. This makes the study of this intensity correlation funcics of multiple Gaussian integrals. For smaller time a diffu-
tion with different light polarizations more important, for it sion theory has been foun@®8] by means of computer
does not contain the dominant short-range term. simulations to be accurate within 1% fdr>5I*. The

A method for evaluating transmission correlation func-double-scattering term has been shown to describe ad-
tions has been developed fdrr>1 based on the asymptot- equately the correlation function for thinner slabs.
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