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Multiply scattered light correlations in an expanded temporal range
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The multiple scattering of light from a Brownian particle suspension is considered for backscattering as well
as transmission through a finite-thickness slab. A method for calculation of the radiative transfer propagator is
developed permitting to extend significantly a range of time wherein the temporal correlation function can be
found. Using the elaborated approach, numerical results are obtained in good agreement with experiment. A
deviation of a correlation function initial slope from linear is shown to arise from a contribution of a finite
number of scattering orders. The correlation functions for polarized and depolarized scattered light components
are calculated inside and outside the backscattering cone. The transmittion correlation function is found for
time intervals far exceeding a characteristic time of Brownian diffusion. A double-scattering term of the
temporal correlation function is obtained that is valid for any time interval.@S1063-651X~97!02109-0#

PACS number~s!: 42.25.Gy
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I. INTRODUCTION

Much attention has been paid recently to light intens
temporal correlations@1–12# in highly turbid media. Their
study is an essential part of the general problem of cohe
phenomena in multiple scattering~see reviews@12–15#!. The
temporal correlation functions of light scattered from a co
centrated Brownian particle suspension are mostly stud
@1,2,4,7#. They are usually considered for a time interval le
than the characteristic timet needed for a particle to diffus
a light wavelength distance. The correlation function
shown to decay with timet as const2At/t in this time in-
terval in accordance with a theory@1,3# predicting within the
diffusion approximation a linear dependence onAt/t. How-
ever, an attempt to describe the light correlation within
same approach in a wider temporal range studied experim
tally turned to be unsuccessful, leading to a noticable d
crepancy between theory and experiment@5#.

Theoretical studies@1,3,7,8# were carried out mostly for a
scalar field, leaving effects of light polarization beyond t
scope of consideration. The vector nature of an electrom
netic field was taken into account in Ref.@16#, describing the
integral intensities of polarized and depolarized light com
nents in coherent backscattering. The polarized compo
only was shown to exhibit a peculiar ‘‘triangular’’ depen
dence of the backscattering peak on the scattering an
whereas the depolarized component was predicted to ta
Lorenzian form, in good agreement with experiment. Fo
system with absolutely anisotropic fluctuations of permitt
ity, the coherent backscattering peak was shown@17# to van-
ish at all for depolarized components.

Considering the temporal correlation function far from t
backscattering cone, initial slopes of the decay rate were
culated for polarized and depolarized components in R
@5#. Contrary to coherent backscattering, the decay of
depolarized component turns out to be steeper than tha
the polarized one. Describing coherent effects in multi
scattering, the radiative transfer propagator is taken gene
561063-651X/97/56~5!/6008~12!/$10.00
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in its asymptotic form ofr 21. It corresponds to the sma
momentum transfer region in wave-vector space. Such
approximation may turn to be insufficient for quantitativ
purposes, since the momentum transfer should contribut
to a value of orderq;1/l , wherel is the photon mean free
path, or extinction length.

We consider light scattering from a Brownian partic
suspension. The temporal correlation function is presente
a series in scattering orders. Accounting successively fo
increasing number of scattering orders, we find a remarka
correspondence between the scattering order number u
consideration and a degree of deviation from a linear beh
ior of the initial slope of the temporal correlation functio
observed experimentally for backscattering from slabs of
ferent thicknesses. The relative weight of the lower scat
ing order contribution is shown to increase with time. Goi
beyond the firstt/t order approximation and summing th
multiple-scattering series, we obtain numerical results t
agree rather well with the known measurement data. Con
ering the electromagnetic field, the decay rate of the tem
ral correlation function is revealed to depend essentially
the light polarization as well as the scattering angle.

We also consider transmission through a slab of fin
thickness, obtaining a closed expression for the temporal
relation function in a large-time limit. We calculate th
double-scattering term for an arbitrary time interval as
function of slab thicknessL.

The paper is organized as follows. In Sec. II a gene
method is outlined, deriving the temporal correlation fun
tion of multiply scattered radiation. In Sec. III the tempor
correlation function is calculated for backscattering with
the scalar field approach. In Sec. IV we take into account
vector nature of an electromagnetic field, considering
temporal correlation function in the neighborhood of the c
herent backscattering peak. In Sec. V we consider the t
poral asymptotics of the correlation function for radiatio
transmitted through a finite thickness slab, and calculate
double-scattering term for an arbitrary time value. Section
is devoted to a general discussion of the results obtained
6008 © 1997 The American Physical Society
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56 6009MULTIPLY SCATTERED LIGHT CORRELATIONS IN AN . . .
II. MULTIPLE SCATTERING SERIES
FOR CORRELATION FUNCTION

We consider a temporal correlation of the intensity d
fined as

CI
~ab!~ t !5^dI a~0!dI b~ t !&2^dI a~0!&^dI b~ t !&, ~2.1!

where dI b(t) is the scattered light intensity at momentt,
lower indices determine the scattered light polarization, a
brackets mean averaging over realizations. Presenting th
tensity as a product of electric fields,

dI a~ t !5dEa~ t !dEa* ~ t !,

wheredEa(t) is the scattered electric field with polarizatio
a at momentt, one obtains the intensity correlation functio
as an average of fourth order in field

CI
~ab!~ t !5^dEa~0!dEa* ~0!dEb~ t !dEb* ~ t !&2^udEa~0!u2&

3^udEb~ t !u2&. ~2.2!

One can present this correlation function within the Gauss
approximation as the pairwise correlation product

CI
~ab!~ t !5u^dEa~0!dEb* ~ t !&u2. ~2.3!

Such an approximation for multiple scattering was used fi
by Shapiro@18#.

Field E(r ,t) is a solution of the wave equation for a ra
dom medium,

curl curl E~r ,t !1
1

c2

]2E~r ,t !

]t2
52

4p

c2

]2P~r ,t !

]t2
,

~2.4!

where two random vectors, polarizationP(r ,t) and field
E(r ,t), are connected by the relationship

P~r ,t !5
«~r ,t !21

4p
E~r ,t !.

The permittivity «(r ,t) describes optical properties of th
random medium.

Let the incident electromagnetic field be a plane mo
chromatic wave with wavelengthl and frequencyv. We
neglect a permittivity variation during the time it takes t
wave to propagate through the system, since this time
much shorter than that of a Brownian particle shift at a wa
length distance. In this case Eq.~2.4! can be presented in th
integral form

E~r ,t !5^E~r ,t !&1E dr1T̂~r2r1!
d«~r1 ,t !

4p
E~r1 ,t !,

~2.5!

where^E(r ,t)& is the mean field andT̂(r ) is the electromag-
netic field propagator taking the form within the far zo
approximation

Tab~r !5
k0

2

r S dab2
r ar b

r 2 D eikr . ~2.6!
-

d
in-

n

t

-

is
-

Herek05v/c, k5A«k0 is the wave number in the medium
and«5^«(r ,t)& is the mean permittivity. Permittivity« con-
tains an imaginary part due to light losses during scatter
Therefore wave numberk also contains an imaginary pa
determining the extinction lengthl 5(2Im k)21.

Equation ~2.5! is solved by iterations. Multiplying two
such iterative solutions obtained for moments 0 andt, re-
spectively, and averaging the product, we obtain the fi
correlation function within the ladder approximation

CE~ t !5^dE~r0,0!dE* ~r0 ,t !&

5E dr1dr18T̂~r02r1!T̂* ~r02r18!G~r12r18 ,t !E~r1,0!

3E* ~r18 ,t !1 (
n51

` E drn11drn118 T̂~r02rn11!

3T̂* ~r02rn118 !G~rn112rn118 ,t !)
l 51

n E dr ldr l8

3T̂~r l 112r l !T̂* ~r l 118 2r l8!G~r l2r l8,t !E~r1,0!

3E* ~r18 ,t !, ~2.7!

where

G~r l2r l8 ,t !5
1

~4p!2
^d«~r l ,0!d«~r l8 ,t !&, ~2.8!

and d«(r l ,0) andd«(r l8 ,t) are permittivity fluctuations at
moments 0 andt, respectively. We omit factors exp(6ivt)
describing the temporal dependence of the incident mo
chromatic wave, since they cancel out when transiting to
intensity correlation function~2.1!.

We define the Fourier transform of the permittivity corr
lation functionG(r ,t) as follows:

G~r ,t !5E d3q

~2p!3
G̃~q,t !exp~ iq•r !. ~2.9!

Let the scattering system be an ensemble of particles un
going the Brownian motion. In this case one can present

G̃~q,t !5G0~q!exp~2Dsq
2t !, ~2.10!

whereG0(q) is the Fourier transform of the static correlatio
function, andDs is the self-diffusion coefficient. We con
sider the dispersion of static correlations being negligib
i.e., G0(q)5G0. This is tantamount to assuming on a sm
size of the scatterers,r c!l, wherer c is either the permittiv-
ity correlation length or the scatterer size.

III. TEMPORAL CORRELATION FUNCTION
FOR BACKSCATTERING. SCALAR FIELD

We assume the heterogeneous medium to occupy a
space with boundaryz50, wherez is a Cartesian coordinate
directed inward toward the medium. We consider ba
scattering at a small angleu counted from the backward
direction. To avoid considering a cyclic diagram contrib
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6010 56V. L. KUZMIN AND V. P. ROMANOV
tion, in this section we assume angleu to be outside the
narrow coherent backscattering cone. Two of these co
tions determine the angular intervall/ l !u!1.

Let the radiation fall normally upon an illuminated are
A5W2 in the z50 plane. The incident wave vector can b
presented in Cartesian components as follows:

k i5k i81 ik i9, k i85~0,0,k!, k i95~0,0,s/2!, ~3.1!

wheres5 l 21 is the turbidity. The effective depth of radia
tion traveling inside the medium is of the order ofl . One
assumes a distanceur02r1u to the observation pointr0 to
exceed significantly the linear dimensions of illuminated v
umeV5Al, i.e., r 0@W and l .

Propagating through a highly heterogeneous medi
light usually becomes depolarized due to the multiple sc
tering. Therefore one generally describes effects stemm
from multiple scattering considering a scalar field instead
the real electromagnetic one. In this case the electric fiel
Eq. ~2.7! is changed to a scalar, and the propagatorT̂(r )
transits toT(r )5r 21k0

2exp(ikr) with the Fourier transform

T~r !5E d3p

~2p!3
exp~ ip•r ! T̃~p!, T̃~p!5

4pk0
2

p22k2
,

~3.2!

The pair of propagators containing the observation po
takes the form

T~r02r n!T* ~r02rn8!'
k0

4

r 0
2

exp@2 iks•~rn2rn8!#, ~3.3!

whereks5kr0 /r 0 is the wave vector of the scattered wa
directed to the observation point. For backward scatter
one has

ks5ks81 iks9 , ks8'~0,0,2k!, ks9'~0,0,2s/2!.
~3.4!

The permittivity correlation functionG(r l2r l8,t) of Eq.
~2.8! does not vanish only for distancesur l2r l8u<r c . There-
fore, taking into accountr c! l in exponentials containing
initial or scattered wave vectors, one obtains

exp~ ik i•r12 ik i* •r18!'exp@ ik i8•~r12r18!2sz1#,
~3.5!

exp~2 iks•rn1 iks* •rn8!'exp@2 ik
s

8
•~rn2rn8!2szn#.

As is seen from these equations, the integrals with respe
r18 andrn118 in Eq. ~2.7! can be taken over infinite space du
to the boundedness of the permittivity correlation functio
The spatially restricted character of the system affects o
the integrations with respect tor1 and rn11. The integration
with respect tor1 yields
i-

-

,
t-
g
f
in

t

g,

to

.
ly

E
z1>0

dr1exp~ ik i8•r12sz1!G~r12r18 ,t !T~r22r1!

5E E dqdq1

~2p!6
G̃~q1 ,t ! T̃~p11q!

3exp@ iq1•r181 i ~p11q!•r2#A1 ,

where

A15E
z1>0

dr1exp@ i r1•~k i82q12p12q!2sz1#.

Using the momentum conservation lawk i82p12q150, we
calculate

A15
~2p!2d2~q'!

s1 iqz
, ~3.6!

whereq' is the transversal component of wave vectorq.
Similarly the integral overrn11 yields

A25E
zn11>0

drn11exp~ i rn11•q2szn11!5
~2p!2d2~q'!

s2 iqz
.

~3.7!

Multiplying A1 andA2, one of two delta functionsd2(q') is
replaced by the illuminated areaA, d2(q')→A/(2p)2. As a
result we obtain

A1A25
~2p!2Ad2~q'!

qz
21s2

. ~3.8!

Performing Fourier transformation of functionsG(r ,t)
andT(r ), we present the field correlation function for bac
scatteringCE

(R)(t) as follows:

CE
~R!~ t !5BE

2`

` dqz

qz
21s2H exp@2Dst~k i2ks!

2#

1 (
n51

` S s

2p2D nE dp1dp2 . . . dpn

3exp$2Dst@~k i2p1!21~p12p2!21•••

1~pn212pn!21~pn2ks!
2#%

3)
l<n

1

@~pl1q!22k2#~pl
22k* 2!

J , ~3.9!

whereB;AG0 is a multiplicative coefficient whose value i
unessential for what follows.

Deriving Eq.~3.9! from the scalar analog of Eq.~2.7!, we
take spatial integrals over unrestricted space except for th
ascribed either to the first or the latter scattering events. S
an approximation is known@3,19# to bring to a divergent
result att50. Thus boundary conditions are to be taken in
account properly@20#. The mirror image method is used fo
this purpose@16,19–21#, which leads to a substitution
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1

qz
21s2

→
1

s2
f ~w!, ~3.10!

wherew5qz /s. A specific form of functionf (w) depends
on the choice of a mirror image plane. Taking the latter
z5zb , zb520.7104l , in correspondence with the classic s
lution of the Milne problem~see@20#!, one obtains

f ~w!

5
~12w2!@12cos~1.4208w!#12w@w1sin~1.4208w!#

~11w2!2
.

~3.11!

Equation~3.9! describing the temporal correlation functio
as the series in scattering orders is valid for any value ot.
We restrict ourselves to the small time limit,t/t!1, where
t5(Dsk

2)21 is the characteristic time it takes a Brownia
particle to diffuse a wavelength distance. Thepl5k neigh-
borhood makes the main contribution to the threefold in
grals with respect topl due to the pole of the integrand
Changing to a spherical coordinate frame

E dpl5E
0

`

pl
2dplE dV l ,

and expanding the integrand in partial fractions we obtai

E
0

` pl
2dpl

@~pl1q!22k2#@pl
22k* 2#

'
p

2~s1 iqzcosu l !
,

~3.12!

whereu l is the angle between vectorpl and axisz. Calculat-
ing this integral we took into account thatqz is of order ofs
and is hence significantly less thanuku.

Thus angular integrals over orientations of vectorspl re-
main to be calculated in Eq.~3.9!,

CE
~R!~ t !5BE

2`

` 1

s2
f ~w!dqzH expS 2

4t

t D1 (
n51

` S s

4p D n

3)
l<n

E dV l

s1 iqz cosu l
expH 22

t

tF ~n11!

2S k i•p1

k2
1

p1•p2

k2
1•••1

pn21•pn

k2
1

pn•ks

k2 D G J .

~3.13!

Expanding exponentials into series in order oft/t, one
obtains
s

-

)
l<n

E dV l

s1 iqzcosu l
expF2t

t S k i•p1

k2
1

p1•p2

k2
1•••

1
pn21•pn

k2
1

pn•ks

k2 D G
5)

l<n
E dV l

s1 iqzcosu l
H 11

2t

k2t
~n21!p1•p21S 2t

t D 2

3
1

2k4
@2~k i•p1!222~k i•p1!~k i•p2!1~n21!~p1•p2!2

12~n22!~p1•p2!~p2•p3!1~n22!~n23!

3~p1•p2!~p3•p4!#1•••J . ~3.14!

Deriving Eq. ~3.14!, the equalityk i52ks , valid for the
backward direction, as well as a symmetry of the integra
with respect to thepl permutation, were used.

Now these angular integrals in Eq.~3.14! are calculated
explicitly,

E dV1

s1 iqz cosu1
5

4p

s
p0 ,

1

k2E dV1~k i•p1!

s1 iqz cosu1
52

4p i

s
wp1 ,

1

k4E dV1~k i•p1!2

s1 iqz cosu1
5

4p

s
p1 ,

1

k2E dV1dV2~p1•p2!

~s1 iqz cosu1!~s1 iqz cosu2!

52S 4p

s D 2

w2p1
2 ,

1

k4E dV1dV2~p1•p2!2

~s1 iqz cosu1!~s1 iqz cosu2!

5S 4p

s D 2F1

2
p0

22p0p11
3

2
p1

2G ,
1

k4E dV1dV2dV3~p1•p2!~p2•p3!

~s1 iqz cosu1!~s1 iqz cosu2!~s1 iqz cosu3!

52S 4p

s D 3

w2p1
3 , ~3.15!

where auxiliary functions are introduced:
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6012 56V. L. KUZMIN AND V. P. ROMANOV
p05p0~w!5
1

w
arctanw,

p15p1~w!5
1

w2
~12p0!. ~3.16!

Substituting Eqs.~3.14! and ~3.15! into Eq. ~3.13! we
come to the expression

CE
~R!~ t !5

B

sE2`

`

dw f~w!XexpS 2
4t

t D (11p0)

1 (
n52

`

expF2
2t

t
~n11!G

3H p0
n2

2t

t
w2(n21)p1

2p0
n22

1
1

2S 2t

t D 2

[2p1p0
n2112w2p1

2p0
n221(n21)p0

n22

3( 3
2 p1

22p0p11 1
2 p0

2)22(n22)w2p1
3p0

n23

1(n22)(n23)w4p1
4p0

n24-] 1•••J C. ~3.17!

Series of separate terms within inner curly brackets are ea
summed as geometric progressions and their derivatives
respect to parameterp0 to yield the correlation function a
follows:

CE
~R!~ t !5B

expS 2
4t

t D
s E

2`

`

f ~w!dwH 11p0f~ t !2
4t

t
p1

2w2

3expS 2
2t

t Df2~ t !1S 2t

t D 2

3f~ t !Fp1X11w2expS 2
2t

t D C
1 1

2 ~ 3
2 p1

22p0p11 1
2 p0

2!expS 2
2t

t Df~ t !1w2p1
3

3expS 2
4t

t Df~ t !

3X211w2p1expS 2
2t

t Df~ t !CG1•••J , ~3.18!

where functionf(t)5@12p0exp(22t/t)#21 stems from the
infinite number of termsp0

nexp(22tn/t) in series~3.17!.
We calculate the temporal field correlation functio

C(R)(t) for backscattered radiation from Eq.~3.18! using no
adjustable parameters. The results are shown in Fig. 1.
temporal correlation function is known@1–3# to depend lin-
earily on At/t in the small time range. For this reason w
plot the correlation function against this temporal variab
From Fig. 3 of Ref.@5# we show measurement data@2# for
the temporal correlation function of light scattered from
ily
ith

he

.

polysterene latex suspension, and a theoretical interpola
plot proposed there. As is seen from the plots, our res
agree rather well with the observed behavior. For larger v
ues oft, At/t>0.5, the curve resulting from Eq.~3.18! ap-
pears to be closer to experimental data than the interpola
of Ref. @5#. Describing an initial decay rate of the tempor
correlation function att!t, one defines a slopeg as a coef-
ficient in the relationship

CE
~R!~ t !'@11g~6t/t!1/2#21. ~3.19!

The calculation yieldsg51.9 as compared with the valu
g'2 obtained from experiment@2#. For comparison we also
show curve~3.19! with g52 used as a fit in Ref.@2#.

Changingf(t) to

fn~ t !5
12@p0exp~22t/t!#n11

12p0exp~22t/t!
~3.20!

in Eq. ~3.18!, one obtains an expression describing a con
bution ofn scattering orders to the correlation function in t
small time limit t!t. We calculate the temporal correlatio
function Cn

(R)(t) arising from then scattering order contri-
bution and plot it in Fig. 2. Calculated results are compa
with experimental data@2# for backscattering from slabs with
different thicknessesL50.6, 1, and 2 mm. The main contr
bution is assumed to be given into the correlation function
the terms of series~3.17! up to n52L/ l * , where l * is the
transport mean free path. Takingl * 5144mm @2#, we choose
n58, 14, and 28. The calculated plot is seen to roll over
short times quite similar to the experimental one. The m
nitude of deviation from a straight line also increases withL
correspondingly to measurements. A similar accumulation
scattering order inputs into backscattering enhancement
analyzed in Ref.@20#.

IV. POLARIZATION EFFECTS IN BACKSCATTERING

In this section we take into account the vector nature of
electromagnetic field, and calculate the intensity correlat
functions for polarized,

CI
VV~ t !5^dI V

V~0!dI V
V~ t !&2^dI V

V&2, ~4.1!

and depolarized,

CI
VH~ t !5^dI H

V~0!dI H
V~ t !&2^dI H

V&2, ~4.2!

components of scattered light. Within the factorization a
proximation they are presented as products of the field c
relation functions,

CI
VV~ t !5uCE

VV~ t !u2, CI
VH~ t !5uCE

VH~ t !u2. ~4.3!

Since the vector nature of the field brings about differe
angular dependences of polarized and depolarized com
nents, we consider a contribution of cyclic diagrams alo
with that of ladder ones. This permits a simultaneous
scription of temporal and angular behavior of the correlat
function for backscattered light. To avoid cumbersome de
vation, we restrict ourselves to the small time limitt!t.

Let the light wave fall normally upon thez50 boundary
and be polarized along axisy, Ei5(0,E,0). The scattered
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light is observed in the (x,z) plane, with the wave vecto
defined asks5(k0u,0,2k). Ignoring a projectiondEz of
scattered field on thez axis at small angleu, we define the
field correlation functions for polarized and depolariz
components as follows:

CE
VV~ t !5^dEy~0!dEy~ t !&,

~4.4!

CE
VH~ t !5^dEx~0!dEx~ t !&.

Sincer c!l within the pointlike scatterer approximation
we set coordinates of complex-conjugated propagators t
equal pairwise, and introduce, for convenience, the fou
rank tensor

Tab~r !Tgd* ~r !5k0
4Lag,bd~r !. ~4.5!

At small times the value of the wave-vector trans
q entering the fluctuation correlatorG(q) is known to
be changed to its mean valueq2→^q2&52k2 @1#. Indeed,
every function G̃(q,t) in Eq. ~3.16! brings a factor
exp(22t/t);122Dsk

2t at t!t.
Thus contributions of ladder and cyclic diagrams to t

field correlation function can be presented as follows:

^dEa~r0,0!dEa* ~r0 ,t !&;exp~24t/t!

3@Gaa,yy
~L ! ~ t !1Gaa,yy

~C! ~ t !#, ~4.6!

where

Gaa,yy
~L ! ~ t !5k0

4E dr1dr2exp@2s~z11z2!#

3F L̂~r12r2!1k0
4G0exp~22t/t!

3E dr3L̂~r12r3!L̂~r32r2!1••• G
aa,yy

~4.7!

and

Gaa,yy
~C! ~ t !5k0

4E dr1dr2exp@2s~z11z2!

1 i ~r22r1!~k i1ks!#F L̂~r12r2!1k0
4G0

3exp~22t/t!E dr3L̂~r12r3!

3L̂~r32r2!1••• G
aa,yy

. ~4.8!

Summing over indexa is not assumed here. Spatial integra
are to be taken over the volume of the scattering system
is seen one has to sum the same series in Eqs.~4.7! and~4.8!.
Denoting the sought sum of series asŜ(r1 ,r2 ,t) and using a
standard procedure of summation, we obtain the well-kno
Dyson-like equation
be
-

r

s

n

Ŝ~r1 ,r2 ,t !5L̂~r12r2!1jE dr3L̂~r12r3!Ŝ~r3 ,r2 ,t !,

~4.9!

wherej5k0
4G0exp(22t/t). FunctionŜ(r1 ,r2 ,t) is known to

be an average of the product of two Green functions of w
equation~2.4! less the single-scattering contribution, and c
be termed as the radiative transfer propagator. In the cas
a restricted systemŜ(r1 ,r2 ,t) becomes translationally non

FIG. 1. Field correlation functions vs square root of time: cur
1 results from Eq.~3.18!, curve 2 represents measurement d
@2,5#, curve 3 is a fit~3.19! with g52, and curve 4 results from a
theoretical interpolation of Ref.@5#.

FIG. 2. Contribution ofn scattering orders to intensity correla
tion functionCI

(R)(t) vs square root of time: curve 1,n58; curve 2,
n514; curve 3,n528; curve 4, total contribution. The inset repr
sents experimental plots@2# for backscattering from slabs with dif
ferent thicknesses:~a! L52 mm. ~b! L51 mm. ~c! L50.6 mm.
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invariant, as distinct from the priming propagatorL̂(r12r2).
Using the mirror image method for light scattering from t
z.0 half-space, one presents the propagatorŜ(r1 ,r2 ,t) in
the form

Ŝ~r1 ,r2 ,t !5Ŝ~0!~r12r2 ,t !

2Ŝ~0!~x12x2 ,y12y2 ,z11z222zb ,t !,

~4.10!

where Ŝ(0)(r ,t)5Ŝ(0)(x,y,z,t) is the radiative transfe
propagator for an infinite medium, and poi
rb5(x,y,2z12zb) is the mirror image ofr5(x,y,z) with
respect to thez5zb plane. Equation~4.10! guarantees tha
propagatorŜ(r1 ,r2 ,t) is zero if at least one of two point
r1 ,r2 is placed in thez5zb plane.

Closing Eqs. ~4.7! and ~4.8! by means of function
Ŝ(r1 ,r2 ,t), and using approximation~4.10! we present the
field correlation function as

^dEa~r0,0!dEa* ~r0 ,t !&;exp~24t/t!

3E
2`

` dqz

2p
f ~qz!@ S̃aa,yy

~0! ~qz ,t !

1 S̃ay,ya
~0! ~q,t !#, ~4.11!

wherea5x or y, Ŝ̃(0)(q,t)5* Ŝ(0)(r ,t)e2 iq•rdr is the Fou-
rier transform of the radiative transfer propagator, a
q5(k0u,0,qz).

Accounting for the single-scattering contribution, the i
tensity correlation functions of polarized and depolariz
scattered fields can be presented as follows:

CE
VV~ t !;exp~24t/t!H 113E

2`

` dqz

2p
f ~qz!@ S̃yy,yy

~0! ~qz ,t !

1 S̃yy,yy
~0! ~q,t !#J ,

CE
VH~ t !;3 exp~24t/t!E

2`

` dqz

2p
f ~qz!

~4.12!

3@ S̃xx,yy
~0! ~qz ,t !1 S̃xy,yx

~0! ~q,t !#.
d

d

Thus to solve the problem one has to find components

tensor Ŝ̃(0)(q,t). Performing the Fourier transformation o
Eq. ~4.9! for an infinite homogeneous medium, we obtain

S̃ab,fc
~0! ~q,t !5L̃ab,fc~q!1jL̃ab,gn~q! S̃gn,fc

~0! ~q,t !,
~4.13!

whereL̃(q) is the Fourier transform of tensorL̂(r )

L̃ab,fc~q!5E dr

r 2S daf2
r ar f

r 2 D S dbc2
r br c

r 2 D
3exp~2 iq•r2sr !. ~4.14!

Using the axial symmetry of this expression with resp
to vectorq, the components of tensor~4.14! are easily cal-
culated in the coordinate frame with thez axis directed along
vectorq. The number of tensor indicesx or y is to be even in
this frame due to the indicated symmetry. Since the to
number of indices is four, the number of indexz is even also.
Thus any nonzero componentL̃ab,gd(q) can contain only
two pairs of different indices. The definition~4.14! immedi-
ately gives the symmetry properties

L̃ab,gd~q!5L̃gd,ab~q!5L̃ba,dg~q!5L̃gb,ad~q!.
~4.15!

Using auxiliary functions~3.16! and defining supplementa

rily p25w22( 1
3 2p1), we find components of the priming

tensor~4.14! as follows:

L̃11,115L̃22,225
p

2s
~3p012p113p2!,

L̃11,225
1
8 L̃33,335

p

2s
~p022p11p2!,

~4.16!

L̃12,125
p

2s
~p016p11p2!, L̃ j j ,335

2p

s
~p12p2!,

L̃ j 3,j 35
2p

s
~p02p2!, j 51 and 2.

Here indices 1, 2, and 3 denote components in the Carte
frame with component 3 directed along vectorq. Solving the
equation set~4.13! with respect to the radiative transfe
propagator, within this coordinate frame we obtain
S̃11,11
~0! 5 S̃22,22

~0! 5
1

2F L̃11,112L̃11,22

12jL̃11,111jL̃11,22

1
~12jL̃33,33!~L̃11,111L̃11,22!12jL̃11,33

2

~12jL̃33,33!~12jL̃11,112jL̃11,22!22j2L̃11,33
2 G ,

S̃11,22
~0! 5

L̃11,22

~12jL̃11,112jL̃11,22!~12jL̃11,111jL̃11,22!

1
jL̃11,33

2

~12jL̃11,112jL̃11,22!$@12jL̃11,112jL̃11,22#~12jL̃33,33!22j2L̃11,33
2 %

,

~4.17!
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S̃1 j , j 1
~0! 5

L̃11,j j

~12jL̃1 j ,1j !
22j2L̃11,j j

2
, j 52 and 3.
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Obtaining the polarized and depolarized light correlat
functions, we calculate the following components:S̃yy,yy

(0)

3(q,t), S̃xx,yy
(0) (q,t), and S̃xy,yx

(0) (q,t), due to Eq. ~4.11!.

These laboratory frame components of tensorS̃(0)(q,t) are
related to the components found in the coordinate fra
fixed by vectorq as follows:

S̃yy,yy
~0! ~q,t !5 S̃11,11

~0! ~q,t !,

S̃xx,yy
~0! ~q,t !5 S̃11,22

~0! ~q,t ! at u50, ~4.18!

S̃xy,yx
~0! ~q,t !5 S̃12,21

~0! ~q,t !cos2f1 S̃13,31
~0! ~q,t !sin2f,

wheref5arctan(k0u/qz). ComponentS̃xx,yy
(0) (q) is given for

u50, since it describes the ladder diagram contribution
pending solely onqz due to Eq.~4.11!.

We analyze first an asymptotics of propagatorŜ̃(q,t) at
small q!s, since it defines essentially an initial decrease
correlation function with time and scattering angle.
w5q/s!1 functionspn can be presented as

pn5
1

2n11
2

w2

2n13
1

w4

2n15
2••• for n50,1,2 . . . .

~4.19!

Substituting Eq.~4.19! into Eq. ~4.16!, we obtain asymptot-
ics of theL̃ tensor components at smallw

L̃11,1158L̃ j j ,3358L̃13,315
4p

s S 8

15
2

8

35
w2D ,

L̃33,3358L̃11,2258L̃12,215
4p

s S 8

15
2

8

105
w2D ,

~4.20!

L̃13,135
4p

s S 2

5
2

2

21
w2D ,

L̃12,125
4p

s S 2

5
2

22

105
w2D , j 51 and 2.

The optical theorem permits us to relate the expans
parameterj to the turbiditys,

j5
3s

8p
expS 22

t

t D . ~4.21!

Substituting Eq.~4.20! into Eq. ~4.17! and accounting for
Eq. ~4.21!, we obtain
e

-

f

n

S̃yy,yy
~0! ~q,t !5 S̃xx,yy

~0! ~q,t !'
8p

3s

1

~q/s!216t/t
,

~4.22!

S̃xy,yx
~0! ~q,t !'

16p

9s
.

The componentsS̃yy,yy
(0) (q,t) and S̃xx,yy

(0) (q,t) are seen to be
singular at$q,t%→0, and to coincide with corresponding ex
pressions for the radiative transfer propagator obtained
lier for scalar field@3#, and S̃xy,yx

(0) (q,t) is finite.
Substituting Eq.~4.22! into integrals~4.11! and calculat-

ing them by the residue theorem, we find

CE
VV~ t !;

1

~11A6t/t!2H 11
1

A6t/t

3F12expS 2
2uzbu

l
A6t/t D G J

1
1

~11A6t/t1~k0u/s!2!2H 11
1

A6t/t1~k0u/s!2

3F12expS 2
2uzbu

l
A6t/t1~k0u/s!2D G J 1B1 ,

CE
VH~ t !;

1

~11A6t/t!2

3H 11
1

A6t/t
F12expS 2

2uzbu
l

A6t/t D G J 1B2 ,

~4.23!

whereB1 andB2 are terms, contributed from nonasymptot
parts of propagator, dropped in Eq.~4.22!. These terms are
known to have an analytic dependence ont and u2. Equa-
tions ~4.23! predict the slopeg for the polarized componen
to depend on the scattering angle decreasing with increa
u. At u50 the slopes of polarized and depolarized comp
nents take the same value,g52.4, assuming that termsB1
andB2 are dropped.

In Fig. 3 the field correlation functions of polarized an
depolarized scattered light components calculated from E
~4.17! and ~4.18! are plotted againstAt/t for different
angles. For convenience all the quantities plotted were n
malized to the polarized light intensitŷdI V

V&5CE
VV(0) at

u50. We choose the dimensionless angular varia
Y5k0lu to be Y50, 0.2, 1, and 2. Forl50.515 mm and
l * 519 mm taken from Ref.@21#, theseY values corre-
spond to scattering anglesu50, 0.05, 0.25, and 0.5, in de
grees, describing, in correspondence with measurement
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6016 56V. L. KUZMIN AND V. P. ROMANOV
@22#, the temporal correlation function at the scattering pe
u50 and 0.05, at half-width,u50.25, and at the foot of the
peak,u50.5.

In Fig. 4 the polarized components with and without
single-scattering contribution~curves 1 and 2, respectively!,
and a depolarized one~curve 3!, are shown forY@1, i.e.,
u@l/ l . To obtain results in this angular range, one is
account for the ladder diagram contribution only.

The polarized and depolarized components exhibit ra
different temporal behaviors of the correlation function, t
polarized one turning out to be more sensitive to the angl
scattering. The calculated slopegpol for the polarized com-
ponent takes the valuesgpol 5 1.5, 0.9, 1.1, and 1.2 fo
chosen angles, respectively, whereas the corresponding
for the depolarized component varies with angle noticea
slighter, gdep 5 2.2, 2.2, 2.3, and 2.4, respectively. A
Y@1 we getgpol51.3 andgdep52.5. Omitting the single-
scattering contribution, we calculategpol8 51.5. These values
are to be compared withgpol51.6 andgdep52.6 obtained in
Ref. @5#. The slope of the polarized component exhibits
nonmonotonic angular behavior because the cyclic diag
contribution becomes regular with respect tot/t at suffi-
ciently small values of scattering angle involving a slo
decrease, and then vanishes at largeY, increasing the slope
once more. The results obtained permit a direct experime
verification.

V. TRANSMISSION CORRELATION FUNCTION

We consider temporal correlation function for radiati
transmitted through a slab with thicknessL@ l , restricting

FIG. 3. Temporal dependence of field correlation function
polarized~curvesa, b, c, andd) and depolarized~curvese, f , g,
andh) components of scattered light at angular variableY: curves
a ande: Y50; curvesb and f : Y50.2; curvesc andg: Y51; and
curvesd andh: Y52.
,

er

of

pe
ly

m

tal

ourselves to the scalar field case. Let a point, wherein
scattered radiation outgoing from thez5L plane is observed
be written asr05(x0 ,y0 ,L1zL) wherezL is a distance from
the z5L plane to the observation point along the norm
Defining vectorrL5(x0 ,y0 ,zL), we obtain

ur02rn11u5A~x02xn11!21~y02yn11!21~zL1L2zn11!2

'r L2
rL•rn11

~L !

r L
, ~5.1!

wherern11
(L) 5(xn11 ,yn11 ,zn112L) is a medium point mea-

sured in a Cartesian frame with origin (0,0,L). Then the pair
of complex conjugated propagators containing the obse
tion point can be written as

T~r02rn11!T* ~r02rn118 !'S k0
2

r L
D 2

exp~2ks•rn11
~L !

1 iks* •rn118 ~L !!. ~5.2!

One hasks5k i for forward scattering. Taking into ac
count relationshipur l2r l8u! l and extracting imaginary part
of wave vectors, we get

exp~2ks•rn11
~L ! 1 iks* •rn118 ~L !!

'exp@2ks8•~rn112rn118 !2s~L2zn11!#. ~5.3!

Exponentials containing incident waves can be rearrange

exp~k i•r12 ik i* •r18!'exp@ ik i8•~r12r18!2sz#. ~5.4!

Repeating arguments similar to those used when deriving
~3.8!, we obtain

r

FIG. 4. Temporal dependence of the field correlation funct
outside the backscattering cone, 1@u@l/ l : curve 1, polarized
component; curve 2, polarized component less single-scatte
contribution; curve 3, depolarized component.
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A1A25
~2p!2Ad2~q'!exp~ iqzL !

2~qz2 is!2
$12exp@2~s1 iqz!L#%2.

~5.5!

Thus the transmission field correlation function can be w
ten atsL@1 as a series in scattering orders

CE
~T!~ t !52BE

2`

` dqz

2p

exp~ iqzL !

~qz2 is!2 (n50

` S s

2p2D n

3E dq1•••dqnexp@2Dst~q1
21•••1qn11

2 !#

3)
l<n

1

~pl
22k* 2!@~p11q!22k2#

. ~5.6!

Equation~5.6! contains three length parameters: the sc
terer diffusion pathl t5(Dst)

1/2, wavelengthl, and extinc-
tion length l . Accounting for l! l one separates thre
asymptotic regionsl t!l, l! l t! l , and l ! l t determining
three temporal intervals wherein the analysis of correlat
function ~5.6! is quite different.

The behavior of the temporal correlation function at t
conditionl t!l, i.e., t!t, has been studied in detail@1-9#. In
the l t@ l region field correlations vanish entirely due to lar
values of t. We thus consider the intermediate interv
l! l t! l , determining the temporal ranget!t!(Dsl

22)21.
f

s

e
d

-

-

t-

n

l

Calculating integrals~5.6!, we use the following formula
for a multiple Gaussian integral:

E
2`

`

•••E
2`

`

dq1•••dqn exp@2Dst~q1
21•••1qn11

2 !#

5
1

An11
S p

Dst
D n/2

~5.7!

at ( i 51
n11qi50. An integral overql in Eq. ~5.6! is mainly

contributed from integration areasuqlxu, uqlyu<(Dst)
21 due

to the Gaussian exponential decay. Using the smallnes
variablesqlx andqly as compared tok8, one can significantly
simplify denominators under symbol of product in Eq.~5.6!.
Taking into account that vectorsq andk8 are directed along
axis z, and neglecting the terms of second order inqlx and
qly , one obtains

~pl1q!22k2'S k81qz2 (
m51

l

qlzD 2

2k2. ~5.8!

Thus transversal variablesqlx andqly are contained only in
the Gaussian exponential, and integrals over them can
taken by means of Eq.~5.7!. The integral overqlz is evalu-
ated quite differently. At qlz<s one has
Dstqlz

2 <Dsts
2!1. Therefore one can neglect the expone

tial decay exp(2Dst(l51
n11qlz

2)'1, and integrate by means o
the residue theorem
E
2`

`

. . . E
2`

`

dq1z•••dqnz)
l 51

n
1

@q1z1•••1qlz2q1~ is/2!#@q1z1•••1qlz2q2~ is/2!#
5S 2

2p i

q2 is D n

. ~5.9!
u-

ar
lly

red

ses

cat-
ion
Also calculating the integral overqz which contains a pole o
(n12) order,

~22p i !nE dqz

~qz2 is!n12
exp~ iqL !52

~2pL !n11

~n11!!
e2sL,

we obtain the transmission correlation function as a serie
scattering orders

CE
~T!~ t !5BLe2sL (

n50

`
~sL !n

n11 S t

4t D
n 1

~n11!!
. ~5.10!

As seen from Eq.~5.10! the number of scattering orders to b
accounted for increases with the slab thickness, and
creases with time.

One can formally sum series~5.10! presenting the corre
lation function in a closed form,

CE
~T!~ t !5

B

sS 4t

t De2sLE
0

kdx

x
~ex21!, ~5.11!

wherek5sLt/(4t).
The temporal correlation functionCE

(T)(t) can readily be
calculated from Eqs.~5.10! or ~5.11!. For sufficiently thick
in

e-

slab, sL510, the double-scattering contribution is calc
lated to be about half of the total function att/t51. The
triple-scattering contribution approximates therewith ne
25%, and scattering orders higher than the fifth practica
do not change the correlation function within the conside
time interval.

The relative weight of higher scattering orders decrea
with decreasing slab thickness. ForsL52 the double scat-
tering contributes near 90% of the total sum att/t51.

VI. DOUBLE-SCATTERING CONTRIBUTION
TO THE TRANSMISSION TEMPORAL

CORRELATION FUNCTION

Since for sufficiently large timest/t.1, and slab thick-
nesses of the order of the extinction length, the double s
tering closely approximates the transmission correlat
function, we calculate its contributionCE,2

(T)(t) to the correla-
tion function valid for arbitrary values oft/t andsL.

This contribution is described by the term withn51 in
Eq. ~2.7!. Approximating propagatorsT* (r282r18) in the
rangeur22r1u@ur12r18u, ur22r28u as

T* ~r282r18!'T* ~r22r1!exp@ ik21~r282r22r181r1!#,
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we obtain

CE,2
~T!~ t !5BE E dr1dr2

e2sur12r2u

ur12r2u2
e2sz12s~L2z2!

3exp$2Dst@~k i81k12!
21~ks81k12!

2#%,

~6.1!

wherek125k8(r12r2)/ur12r2u is the wave vector of radia
tion propagating between two scattering points. Spatial in
grals are taken over an infinitely wide slab with thicknessL.

Introducing the relative coordinates r5r12r2,
r5(x,y,z), and transforming the spatial integral to th
spherical coordinate frame, we have

CE,2
~T!~ t !52pBexp~2sL !E

2L/2

L/2

dz1S E
0

1

duE
0

~L22z1!/~2u!

dr

1E
21

0

duE
0

2~L12z1!/~2u!

dr D
3exp$2@sr 14Dstk

2#~12u!%. ~6.2!

Taking integrals with respect tor andz, we obtain the trans-
mission correlation function within the double-scattering a
proximation in the form

CE,2
~T!~ t !5

B

2
L exp~2sL24Dstk

2!H E
0

1

du
exp~4Dstk

2u!

12u

3H 12
u

sL~12u!F12expS 2
s~12u!L

u D G J
1E

21

0

du
exp~4Dstk

2u!

12u H 12
u

sL~12u!

3FexpS s~12u!L

u D21G J J . ~6.3!

Equation ~6.3! describes the double-scattering transm
sion for a wide beamA1/2/L@1, incident normally to the
slab. For a scattered wave deviated from the normal di
tion, Eq. ~6.3! remains valid to terms of order ofu2.

The double-scattering termCE,2
(T)(t) calculated with Eq.

~6.3! is shown in Fig. 5 as a function of time, for various sl
thicknesses. It appears to coincide with the temporal co
lation function~5.10! contributed by all scattering orders fo
t/t>3. The decay ofCE,2

(T)(t) becomes more sharp with de
creasing thickness. Comparing results of the calculation w
Eqs. ~5.10! and ~6.3! one sees that the temporal correlati
function can be adequately approximated by the double s
tering for sL<2.

VII. SUMMARY

We calculated the temporal correlation function of mu
ply scattered light for backscattering and transmission.
developed a method for calculating the correlation funct
in terms oft/t. Applying it to the backscattering and takin
into consideration terms up to the (t/t)2 order, we obtained
results that quantitatively agree with the known experimen
-

-

-

c-

e-

th

t-

e
n

l

data. We ascribed the deviation of the linear dependenc
the correlation function onAt/t at small times to the bound
edness of scattering orders because of the finite slab th
ness, pointing out an illustrative resemblance to experime
plots. Note that, comparing the calculated results with m
surement data, we substitutedl * instead ofl , considering it a
reasonable fit@22# for results obtained within the pointlike
scatterer approximation. Considerable attention is being
cused currently on the problem of scatterer finiten
@12,23–25#.

We calculated the temporal correlation functions for p
larized and depolarized scattered light components. The t
poral slope for the polarized component was shown to
quite sensitive to the scattering angle, whereas the slope
the depolarized one practically does not vary with the ang

Within the factorization approximation the intensities
scattered light with the same polarizations only give rise
nonzero correlations, sincêdEx(0)dEy* (t)&50 from the
symmetry consideration. Going beyond the framework
this approximation, the connected eight vertex diagra
should be considered, involving a nonzero contribution to
correlation of intensities with different scattered light pola
izations, ^dEx(0)dEx* (0)dEy(t)dEy* (t)&Þ0. Graphically
the transition to connected diagrams is performed by me
of the Hikami vertex@26#, and corresponds formally to ac
counting for the higher-order terms in parameterl/ l . The
factorization approximation describes the main, short-ra
part of the correlation function, whereas the connected d
gram contributions reveal themselves as long-range p
weaker in magnitude@27#. Generally the long-range term
arising from thel/ l higher-order contributions become mo
prominent for larger values oft and can obscure the correc
tions of higher order int/t to the short-range term foun

FIG. 5. Transmission temporal correlation function of fie
within the double-scattering approximation:~1! L/l50.5; ~2!
L/l55; ~3! L/l52; ~4! L/l51.
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here. This makes the study of this intensity correlation fu
tion with different light polarizations more important, for
does not contain the dominant short-range term.

A method for evaluating transmission correlation fun
tions has been developed fort/t.1 based on the asympto
r,

ev

tt

e-
f

-
ty
-

-

ics of multiple Gaussian integrals. For smaller time a diff
sion theory has been found@28# by means of compute
simulations to be accurate within 1% forL.5l * . The
double-scattering term has been shown to describe
equately the correlation function for thinner slabs.
v.

k,

tt.
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